Relativistic calculations of the nuclear recoil effect in highly charged few-electron ions

N. A. Zubova1, V. M. Shabaev1, I. I. Tupitsyn1, G. Plunien2

1Department of Physics, St. Petersburg State University, Ulianovskaya 1, Petrodvorets, St. Petersburg 198504, Russia
2Institut fur Theoretische Physik, TU Dresden, Mommsenstrasse 13, Dresden, D-01062, Germany
zbowa@pcqnt1.phys.spbu.ru

As is known, in the nonrelativistic atomic theory the one-electron nuclear recoil effect can be easily evaluated using the reduced electron mass. Full relativistic theory of the recoil effect can be formulated only within quantum electrodynamics [1-4]. However, the lowest-order relativistic recoil corrections can be calculated within the Breit approximation employing a relativistic nuclear recoil operator.

The main goal of the present work is to evaluate the nuclear recoil corrections to the energy levels of highly charged Li- and B-like ions by perturbation theory to zeroth and first orders in the parameter \(1/Z\). The calculations are restricted to the Breit approximation, where the nuclear recoil effect can be described by the following operator (see, e.g., Ref. [4]):

\[
H = \frac{1}{2M} \sum_{i,k} \left[\vec{p}_i \cdot \vec{p}_k - \frac{\alpha Z}{r_i} \left(\vec{\alpha}_i + \frac{(\vec{\alpha}_i \cdot \vec{r}_i) \vec{r}_i}{r_i^2} \right) \cdot \vec{p}_k \right].
\]

To simplify the derivation of formal expressions of the perturbation series, we employ the quantum field formalism with the closed shells regarded as belonging to a redefined vacuum. The numerical calculations of these expressions to zeroth and first orders in \(1/Z\) are performed using the finite basis set method. Alternatively, the interelectronic-interaction corrections to the recoil effect can be evaluated employing the configuration-interaction and multiconfiguration Dirac-Fock methods [5,6], the results of our calculations are compared with related predictions of Ref. [5,6].

This work was supported by the Helmholtz Association under grant agreement IK-RU-002, the Dynasty foundation, and G-RISC.

References: