Polarization transfer in Rayleigh scattering by K-shell electrons

Th. Jahrsetz¹,²,³, P. Amaro¹, Th. Stöhlker²,³,⁵, S. Fritzsche²,⁴, A. Surzhykov¹,²,³

¹Physikalisches Institut, Universität Heidelberg, D-69120, Germany
²Helmholtz Institut Jena, D-07743, Germany
³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, D-64278, Germany
⁴Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743, Germany
⁵Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, D-07743, Germany

jahrsetz@physi.uni-heidelberg.de

Due to advances in coherent light sources and position sensitive x-ray detectors the polarization properties of photons elastically scattered by heavy atoms and ions have recently become experimentally accessible. In order to better understand possible future experiments a better theoretical knowledge of the polarization transfer in such Rayleigh scattering processes is required. In this contribution we present a theoretical analysis of polarization transfer between the incident and the elastically scattered photon.

To study such a transfer we used the Dirac equation and second order perturbation theory. Within this framework the computations were performed by expressing the relativistic states in terms of a finite basis set based on B-splines and B-polynomials.

Detailed calculations were conducted on the K-shell of H-like ions for a wide range of nuclear charges and photon energies. The role of relativistic effects and non-dipole electron photon interactions for different nuclear charges and photon energies are discussed in detail.

This work was supported by the Helmholtz Gemeinschaft (Nachwuchsgruppe VH-NG-421).