Sisyphus Cooling of Electrically Trapped Polyatomic Molecules

<u>Alexander Prehn¹</u>, Barbara G.U. Englert¹, Rosa Glöckner¹, Martin Ibrügger¹, Martin Zeppenfeld¹, and Gerhard Rempe¹

¹Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany alexander.prehn@mpq.mpg.de

Potential applications of cold and ultracold polar molecular gases ranging from many-body physics and quantum information science to precision measurements and chemistry benefit from the molecules' many internal degrees of freedom and long-range dipole-dipole interactions. Direct cooling of polar molecules to the ultracold regime remains a challenge, but allows to cool chemically diverse species. Here, optoelectrical Sisyphus cooling [1] presents a unique opportunity to even cool ensembles of polyatomic molecules.

A wide range of molecule species stored in an electric trap [2] can be cooled using only a single infrared laser along with additional microwave and radio frequencies. As a first result [3], we have demonstrated a temperature reduction by more than an order of magnitude—from 390 mK to 29 mK—of about a million CH₃F molecules. At the same time, the phase-space density is increased by a factor of 30. In the cited experiment only a pair out of a number of populated rotational states of a preselected thermal ensemble has been used. Ongoing efforts aim at a larger size of the initial ensemble accessible to cooling, an increased cooling rate, and a more efficient detection. These improvements should allow sub-mK temperatures to be reached and even cooling of the rotational states to be realized with polyatomic molecules for the first time.

Figure 1: Measured velocity distribution of the cooled molecular ensemble in comparison with the initial sample. The mean velocities and the corresponding temperatures are stated.

References:

- [2] B.G.U. Englert et. al., Phys. Rev. Lett. 107, 263003 (2011).
- [3] M. Zeppenfeld et. al., Nature 491, 570 (2012).

^[1] M. Zeppenfeld et. al., Phys. Rev. A 80, 041401 (2009).