Photoexcitation of He-like $2s2p\,^1P_1$ from $1s^2\,^1S_0$: radiative and autoionization decays.

Oleg Zabaydullin1,2 and Jacques Dubau3

1Institute of Applied Geophysics, Rostokinskaya 9, 129128 Moscow, Russia
2National Research Center 'Kurchatov Institute', Akademica Kurchatova pl., 123182 Moscow, Russia
3IAS, UMR8624, Université Paris-Sud, 91405 Orsay, France.

E-mail: jacques.dubau@ias.u-psud.fr

Photoionization/photoabsorption cross sections were computed by the Breit-Pauli R-matrix code [1] for $1s^2$ and $1s2s\,^1S_0$ near $2s2p\,^1P_1$. The method takes into account processes (1), (2) and (3). To insert process (4), we use Davies and Seaton radiative damping theory [2], as done in [3].

\[(A) \quad 1s^2\,^1S_0 + \omega_1 \quad \rightarrow \quad 2s2p\,^1P_1 \quad \rightarrow \quad 1s + \epsilon_1p \quad (C) \]
\[(2) \quad \downarrow \quad \rightarrow \quad (3) \quad \downarrow \quad (4) \quad l_{s2s\,^1S_0} + \omega_2 \quad (B) \]

ω and ϵ are photon and electron energies (a.u.). As example, we consider He-like iron. In figure 1, the cross-section for the transition $(A) \rightarrow (B)$ is plotted (continuous curve), i.e. $2s2p\,^1P_1$ to $1s2s\,^1S_0$ photo-excitation. This curve can be fitted to a Lorentzian profile (dashed line). In figure 2, the photoionization cross-section $(A) \rightarrow (C)$ is plotted (continuous line) as well as the photoabsorption cross-section (dashed line), which is the sum of the two preceding processes.

References: